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The importance of fluctuating turbulent stresses in the flow over a wave is 
examined. It is shown that anisotropic stresses, which are most likely to be 
turbulent Reynolds stresses, are essential to the process of energy flow to the 
wave. Two fundamentally different methods of predicting fluctuating turbulent 
Reynolds stresses are examined. One method makes use of a phenomenological 
closure of the conservation equation for the turbulent Reynolds stresses and is 
similar to the turbulent boundary-layer calculation scheme of Bradshaw, Ferriss 
& Atwell (1967). The second method is based on the assumption that the turbulent 
stresses are determined by the recent history of velocity shear experienced by a 
fluid parcel and results in a viscoelastic constitutive relation for the turbulence; 
in the limit of shortest ‘memory’ this relation becomes the eddy viscosity model 
proposed by Hussain & Reynolds (1970). Comparison of predicted and measured 
values of surface pressure indicates that the eddy viscoelasticity model can 
explain measured pressure distributions but the comparison is not conclusive. 
Suggestions for further measurements are made. 

1. Introduction 
Since Miles (1957) proposed his quasi-laminar model of flow over a wave it has 

become apparent that a satisfactory description of this phenomenon must include 
the interaction between the wave and the turbulent components of the flow. 
Intuitively this is reasonable since it is the turbuIent components of the flow 
which transfer momentum to a flat surface (excepb very near the surface) and 
it would therefore be surprising if they did not play a significant role in flow over 
a wavy surface. From a theoretical point of view the neglect of turbulent stresses 
and nonlinearities in the analysis of flow over a wave dictates that all the 
momentum transferred to the wave is extracted from the critical layer by the 
action of molecular viscosity (this is proved in the following section). If non- 
linearities are included, then only the smallest waves can receive momentum 
through this mechanism (see Davis 1969) but it was found by Davis (1970) that 
even when the dynamics are linear small fluctuations of the turbulent Reynolds 
stresses seriously alter the wave-induced flow, indicating that the quasi-laminar 
model is very sensitive to the assumption that there are no fluctuations of the 
turbulent stresses. 
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The objections raised above are, however, all indirect, and without the 
experimental evidence now available the debate could only end inconclusively. 
Stewart’s (1970) measurements of the mean flow over waves in a laboratory 
showed significant departures from the quasi-laminar model. Kendall’s (1970) 
laboratory study of flow over a wavy wall not only showed discrepancies between 
measured and predicted mean-flow quantities but also demonstrated that the 
turbulence is affected by the wave and that the turbulent stresses are not 
constant. Finally, Dobson (1969) has shown that under field conditions the work 
done on waves by the mean normal stress is seriously underestimated by Olie 
quasi-laminar model. This evidence together with the theoretical objections 
seems sufficient to lead to the conclusion that the Miles quasi-laminar model is 
incorrect. 

Miles (1967) discussed the problem of including wave-induced variations of 
turbulent Reynolds stress in the analysis of flow over a wave. This requires the 
introduction of some phenomenological model to describe the response of the 
turbulence to mean-flow fluctuations and then the application of this model to 
the flow over a wave. Miles concluded that such a step was not warranted by the 
then available experimental data. There is now sufficient data available to impose 
a fairly stringent test on any model and it is the purpose of this paper to report 
the results of some attempts to apply models of turbulence to the problem of flow 
over a wave. 

The formulation of the problem of interest was first accomplished by Miles 
(1957) and has been discussed more recently by Phillips (1966) and Miles (1967). 
Consider a wavy boundary which, when viewed in a frame of reference translating 
at the wave speed c, is of the form 

x3 (surface) = ay = acosx,, 

where all lengths have been scaled by the inverse wavenumber of the wave train. 
Define the mean of any quantity as the average value obtained at  any particular 
choice of x1 and x3 and the overall mean as the average of the mean quantities at  
all xl. Mean quantities (denoted with a capital and caret) may be considered as 
the sum of an overall mean part (denoted by a capital letter or by an overbar) 
and a wave-induced part (denoted by a capital script letter). The total quantity 
is then the sum of a mean value and a turbulent component (denoted by a lower 
case letter). Thus the components of the total velocity are ??,+u,, where all 
velocities are scaled by a characteristic velocity U,. The mean velocity is 

0, = s,, u(x,) +a*,, 

where the delta with subscripts is the Kronecker delta and 4Y2 = 0. 
For the purposes of this paper, viscous stresses will usually be considered 

negligible so that the total mean stress tensor will be nearly the sum of the iso- 
tropic pressure component 

R,, = mean ( -%,urn) = R,, + a%?,,, 

where all stresses are scaled by the product of density and U;. The total stress 
tensor is then A / . A  

S,, = - S,, P + R,, + viscous stress = S,, + ay?,. 

= P + a 9  and Reynolds stress 
A 
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By definition the overall mean quantities are functions only of x3 and conse- 
quently must obey the overall averaged momentum equations, which reduce to 

- d S13 = - d x,, = 0. 

ax3 dx ,  

The total stresses are constants and therefore the stresses R,, and R3,- P are 
nearly constant except possibly very near the wave surface, where viscous effects 
may become important. 

If the dimensionless wave amplitude is sufficiently small it is plausible that the 
dynamics of the perturbation quantities become linear and that terms of O(a2) 
can be neglected. This is a crucial assumption since nonlinear effects can alter 
the nature of the flow in a fundamental way (Davis 1969). If terms of O(a2) are 
neglected the mean momentum equation becomes 

u a,%, + a,, we3 = amYmm, (1.1) 

where S,, is the Kronecker delta function and the summation convention is 
implied unless otherwise stated. The continuity equation is a,%, = 0 and the 
linearized boundary conditions to be applied to the mean flow are 

a3 = Ua,r ,  %, = - U'q+@s at x ,  = 0, (1.2) 

where %s is the fluctuating component of the mean tangential velocity of the 
surface. If 4Y8 is of the same order of magnitude as the vertical velocity at the 
surface then it may be neglected in (1.2) so long as U' > U at the surface. I n  most 
cases of laboratory or geophysical interest this condition is met and consequently 
eS is neglected in the remainder of this paper. 

In  order to make use of these equations it is first necessary to relate the stresses 
Yn, to the other flow properties. This is the primary difficulty in predicting the 
turbulent flow over a wave owing to the fact that the dominant stresses are likely 
to be turbulent stresses for which no suitable constitutive equation has yet been 
found. 

Miles (1957) assumed that the turbulent stresses were negligible throughout 
the flow and that viscous stresses were of importance only in the critical layer 
near points where U = 0 and very near the surface. This allows (1.1) to be reduced 
to the Rayleigh equation everywhere except in the critical layer. It is often said 
that the Miles mechanism is 'inviscid' but this statement is unfortunately mis- 
leading since it obscures the fact that work done on the surface, according to the 
theory, is determined entirely by the structure of the critical layer, which is 
dominated by viscous stresses. It will later be shown that, in fact, the work done 
on the boundary is entirely due to anisotropic stresses and that if the fluid were 
inviscid and laminar there would be no work done on the wave. 

The confusion associated with the role of viscosity in the Miles model evidently 
stems from a misunderstanding concerning the process of matching the solutions 
of the Rayleigh equation across the critical layer, where that equation does not 
apply. For example, Lin (1955, ch. 8) expands the two fundamental solutions of 
the Rayleigh equation near the critical layer as 

F L M  52 
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where the subscript c refers to the critical height x3 = z, at which U = 0. He then 
states that the “decision of the proper branch of the multiple-valued expressions 
is one of the main problems with solutions of this type ”. It is my opinion that this 
statement obscures the fact that the Rayleigh equation does not apply in the 
critical layer and therefore that the forms of $- above and below the critical layer 
can be related only by matching each of them to the solution which is valid there. 
For x3 < z, 

is a solution of the Rayleigh equation. In  general there is no reason why A,  which 
is of critical importance in determining the work done on the wave, should be 
(212 - 1) in- as is implied by the choice of the ‘proper branch’ of the logarithm. 
When viscosity dominates in the critical layer, as was assumed by Miles, the 
appropriate constant is A = - in-. When nonlinear effects dominate over viscous 
ones a match across the critical layer is obtained by setting A = 0 (Davis 1969), 
and, if turbulent stresses were to dominate in the critical layer and be negligible 
outside, A may take on another value. 

The importance of the critical layer rests in the fact that if the wave-induced 
stresses Ynm are nearly isotropic (as would generally be the case at large Reynolds 
number if the flow is laminar) it is only in the critical layer, where inertial effects 
are small, that the non-isotropic stresses can extract momentum from the mean 
flow. If, however, fluctuating turbulent stresses are accounted for, then non- 
isotropic stresses play an important role over much of the flow and the critical 
layer ceases to be of any particular significance. 

Before turning to the problem of predicting the turbulent stress fluctuations 
gnrn it seems worthwhile to examine some more general aspects of flow over a 
wave in order to clarify the role played by non-isotropic stresses and to clarify 
certain points concerning momentum and energy fluxes to a wavy boundary. 
This is the subject of the following section. 

2. Momentum and energy budget 
Both Phillips (1966) and Miles (1967) have used the momentum flux through 

the wave surface to infer the growth rate of waves. These discussions have led 
to some controversy concerning both the magnitude of the overall average of the 
momentum flux and its importance in determining the rate of wave generation. 
In  this section the flow of momentum and energy to the wave surface is discussed 
and the importance of anisotropic stresses in determining these quantities is 
demonstrated. 

The mean flux of momentum through the surface is the scalar product of N,, 
the unit normal to the surface, and the total momentum flow tensor f i n ,  - UnUrn. 
The mean flux of x1 momentum is then 

A h  

where the subscript 7 denotes evaluation at the surface. Since the mass flux 
through the surface must vanish %!mNm = 0. Expanding about the mean surface 
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x3 = 0, neglecting terms of O(a3) and taking an overall average gives the average 
momentum flow per unit projected horizontal area: 

where the subscript 0 denotes evaluation at x3 = 0. Integrating by parts and 
noting that (9& - @l) 7 is periodic the integral in (2.1) becomes 

The terms in brackets is, according to (1. l), equal to U ' g 3  and from (1.2) it is 
seen that a3 and 7 are in quadrature and thus the integral vanishes. Therefore, 

- - 
Hl = [Xi3 - a2 @1@3]0 = ["''/Re + R,, - a2 @1@3]0, (2.2) 

where Re = U, (wavenumber x kinematic viscosity) is the Reynolds number. 
It will be noted that according to (2.2) the momentum flow t o  the wave, even 

in the presence of viscous and turbulent stresses and regardless of the boundary 
condition imposed on the turbulent stresses, is precisely H, = - a3 (@l%3)o. This 
differs from the result given by Phillips (1966, equation (4.3.23)). This discre- 
pancy arises because the momentum carried by stresses other than pressure were 
neglected by Phillips, a simplification which is inconsistent with the inclusion of 
deviatoric stresses in the h a 1  result. Equation (2.2) differs from the analogous 
result obtained by Miles (1967, equation ( 4 . 7 ~ ) )  only in the inclusion of viscous 
effects. 

It should be emphasized that (2.2) applies a t  the wave surface and not only 
outside the viscous sublayer. This fact leads to the rather surprising conclusion 
that the momentum flux to the wave is not dependent on the flow over the 
wave but depends only on the boundary condition imposed on this flow by the 
wave. Thus, once a1 at the meanwave surface is known, - a2(@1@3)0 and hence the 
momentum flux to the wave are known irrespective of the nature of the flow. 
This result has the corollary that a purely irrotational periodic wave, for which 
el and @3 are in quadrature, cannot have its momentum increased by the action 
of the wind. 

Evidently momentum flux is not a very useful measure of wave generation 
rate and it is therefore necessary to turn to the consideration of energy. The mean 
work done on the wave per unit area of the undisturbed surface is 

- 

- 

E = a2Y&%,N,, 

and following standard techniques (cf. Batchelor 1967, Q 3.4) it is possible to show 
that, to O(a2), the overall mean of this quantity is 

The first term in this expression is the rate at  which the energy of the mean flow is 
converted to kinetic energy associated with the wave-induced motion; the second 

19-2 
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term represents a conversion of wave-induced kinetic energy to heat and turbulent 
kinetic energy. 

It is important to note that the relation E = M,c used by Miles (1967) to relate 
the energy flux to the overall mean of the wave-induced Reynolds stress is correct 
only when deviatoric stresses are confined to the critical layer and a thin boundary 
layer at the wave surface. In  that case vanishes above the critical layer and 
is constant between the critical layer and the boundary layer. Neglecting the 
contribution to (2.3) from the regions where Yn,, is important, 

- 

(2.4) 

Thus E = Mwc, where M, = - 
region between the critical and boundary layers. 

from 

is evaluated not a t  the surface, but in the 

As shown by Lighthill (196Z), the overall mean stress - @l@3 can be computed 
~ 

= /”” (a3%1-a1@3) %3dx3; (2 .5 )  
m 

where the integrand will be recognized as the correlation of the wave-induced 
vorticity and the vertical velocity. Taking the curl of (l.l), operating on the 
result by a,, multiplying by %3 and taking an overall mean yields 

In  arriving at  this result the relation at%n = -4Yn has been used. It is evident 
from (2.6) that if YnWL is isotropic, as would be the case if the flow were inviscid 
and laminar, then the correlation appearing in (2 .5 )  must vanish everywhere 
except at  the single point where U = 0. Thus, unless either the vorticity or g3 
becomes infinite at  that point, the stress %1%3 must everywhere have the value 
found at  infinity which presumably is zero. Thus for any physically realizeable 
inviscid laminar flow %,a3 = 0. Because an@n = 0 the energy flux (2.3) must also 
vanish. 

The quasi-laminar model of Miles (1957), which is sometimes improperly 
referred to  as inviscid, makes use of the asymptotic solution of the Orr-Sommer- 
feld equation in the limit of vanishing viscosity to evaluate The nearly 
discontinuous variation of this quantity found in the critical layer must, according 
to (2.6), result from the viscous stresses which dominate in this region. 

From the foregoing discussion it is evident that the work done on a wave 
cannot be predicted unless the anisotropic stresses associated with the flow are 
accurately known. Since these stresses are likely to be primarily turbulent 
Reynolds stresses this presents an extreme difficulty owing to the absence of any 
established method of predicting turbulent stresses. The approach adopted here 
is to examine two different models of turbulent stress variations and to apply 
them to flow over a wavy boundary. The two models are discussed in § $ 3  and 4 
and the results of the models are compared with experiment in 9 5. 

- 

- 

- 



Turbulent $ow ovei a wavy boundary 293 

3. Stress conservation equations 
Perhaps the most straightforward method of dealing with turbulent stress 

fluctuations is to attempt a phenomenological closure of the Reynolds stress 
conservation equations. Using standard techniques (Hinze 1959) it is possible to 
derive and linearize the equations for the Reynolds stresses into the form 

where, in keeping with the discussion of $ 1, a3Rn, has been taken as zero and 
Re is the Reynolds number. The term Ynm is the fluctuating part of Prim, the 
mean of 

akunumuk + U ,  anlp i- urnanp + @/Re) akun. ak urn. 

In order to make use of (3.1) to predict turbulent stress fluctuations one must 
find a way of relating Fnm to the quantities W,, and @n. Bradshaw et al. (1967) 
have proposed such a closure hypothesis, which has resulted in remarkably 
successful predictions of boundary-layer development under various impressed 
pressure gradients. The basic idea involved in this method is that the value of Prim 
is more closely related to the turbulence itself than to the mean flow and may 
therefore be predicted from the local value of Bnm. The success of the Bradshaw, 
Ferriss & Atwell (BFA) model suggests that it may be useful in predicting flow 
over a wave, but before this can be done certain modifications of the model must 
be made. First, all dependence on the boundary-layer thickness must be removed 
since for geophysical flows there is no boundary-layer thickness and the only 
characteristic scale is the height above the boundary. Further, the BFA model 
considers only the shear stress fi13 (the only stress of importance in boundary- 
layer calculations) whereas for flow over a wave the normal stress components 
must be considered; the model must therefore be expanded to include prediction 
of these stresses. The most serious difficulty with the BFA model is the assump- 
tion that the shear stress and the average normal stress (or the turbulent kinetic 
energy) vary proportionally. This assumption is at variance with Kendall’s 
(1970) observat&n that the shear stress and tjhe tnrbulent ‘intensity’ appear to 
exhibit different variations with wave phase. The approach adopted here is to 
test two generalizations of the BFA model, one in which all stresses are assumed 
to vary proportionally and one which considers that only the normal stress 
variations are proportional. In either case a relation between Pnrn and R,, is 
assumed on the basis of dimensional arguments and the constants in the relation 
are adjusted so as to be in agreement with the known behaviour of a constant 
stress boundary layer. The models, which then contain no adjustable constants, 
are used to compute flow over a wave and the results compared with experiment 
in $5. 

For both models it is assumed that the norma; stress variations are propor- 
tional to variations of the average normal stress Q = .I?,, = Q + a 2  according to 

9%, = 9Rnm/Q for n = m. 

h 
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Summing (3 .1)  over n = m leads to 

Ua,9+22Rn,a,~@,+2U'a,,  = F,,. ( 3 . 2 ~ )  

The conservation equation for shear stress is 

U a,a,, + R1,al@, + R,,a34'll + U' (R3,/Q) 9 = q3. (3.2b)  

In  both'of these equations the molecular diffusion of Reynolds stress (Re-la; W,,) 
has been neglected, thus restricting the model to high Reynolds number flows. 

The quantity C?,, has the dimensions of (~e loc i ty)~  x (length)-l and on dimen- 
sional grounds it; has been assumed that 

2cn ,. 
T,, = -- \Rnnl+, T,, = !a,@,, 

3 L  3 L  

where L is the height above the boundary, that is, L = x , - a ~ .  Linearizing the 
expressions for ?,, gives 

1 

x3 x3 
Cn = 3 [ - 2 + f Q  -71, (3 .3u)  

(3 .3b)  

The constants a, and a, can be found by requiring (3 .3 )  to predict Fnm when the 
perturbation stress grim is a constant, that is, when there is a small change of the 
stress in a boundary layer with vertically uniform shear stress. If the reference 
velocity U, is taken as the shear velocity over von K&rm&n's constant, the law of 
the wall, which pertains to the particular stress perturbation considered here, 
yields 

Substitution of the form of &, and equations (3 .3)  into (3 .2 )  then gives 

One of the models tested here is essentially a direct adaptation of the BFA 
prediction scheme in which it is assumed that all turbulent stresses vary propor- 
tionally. Thus for model A it is assumed that 

grim = $Rnm/Q (3 .4 )  

for both shear and normal stresses. This assumption is not consistent with the 
simultaneous satisfaction of both of (3.2) and the two relations (3 .3) .  In  keeping 
with the BFA scheme it has been assumed that ( 3 . 2 ~ )  and ( 3 . 3 ~ )  are applicable 
but (3 .2b )  has been dispensed with. 

The second model tested here (model B)  results from assuming that the normal 
stresses obey (3 .4 )  but that the shear stress does not. In  this case all the equations 
(3 .2 )  and (3 .3 )  are used to calculate both al, and 9. 

The Reynolds stress equations together with the momentum equations (1.1) 
can be reduced to a set of ordinary differential equations by letting 

@3, 9, grim) = Re ( $ I ,  - i$, n-, r,,) e%. 
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The momentum equations then become 

Ui$-" - i U'$- + irr = ri3 + irll, ( 3 . 5 a )  

U$- + rr' = ri3 + ir13, (3 .5b )  

when it is assumed that 9,, = -Panm + grim. The stress conservation equations 
appropriate to model A become 

(Ui- U'R13/Q) q = - 2R13 U" - 2[RI3($-"+ $) + (R11-.&) i$"], (3 .6a )  

rnm = RwnqIQ 
and those for model B are 

( 3 . 6 b )  

( Ui - 3 U"(R13/Q)) p - 2 U"r13 = - 2R13 u" - 2[R13($-'" + $) + ( R 1 l  - R33) @ ' I ,  
( 3 . 7 a )  

(Ui-$(R33/R13) U')r13+ (R33/Q) U'q = -R33U"-R33$-""-R11$-. (3 .7b )  

Before proceeding to the solution of these equations it appears worthwhile to 
point out certain features of the stresses predicted by models of this general type. 
If the Fnm functions in (3 .1 )  are chosen to be proportional to B?,, and it is 
required that the forms be consistent with the law of the wall it follows that as x3 
approaches infinity Y,, varies as O(9, , ) /x3 and therefore (3 .1 )  simplifies to 

ua,g,, = - A,, a,%,,, - R,, a,*,, (3 .8)  

if molecular diffusion of 9,, is neglected. This behaviour has two important 
consequences. First, the assumption that 9,, = R,,2?/Q is not generally valid; 
but more importantly, because of the pseudo-elastic behaviour exhibited by 
(3 .8 ) ,  the form of $- as x3 -+ co is entirely different from the corresponding 
behaviour for a viscous fluid. When the stresses are given by a viscous law (3 .5 )  
admits two solutions which vanish as x3 + co; when the stresses are given by 
(3 .8 )  there is only one such solution and consequently only one of the boundary 
conditions at the surface can be applied. 

In order to examine the flow far from the boundary it is convenient to eliminate 
n from (3 .5 )  and to substitute (3 .8 )  for the stress functions r,,. When terms of 
O( 1 /x3)  are neglected this leads to 

i U(+" - $-) = rI3 + i(ril - rA3) 

Since U' < 1 the solutions of this equation can be approximated by taking 
U constant and letting $- = exp (ax3) .  The four possible values of a are 

* R 1 3  
a = & 1, = - z - + - [R3,U2 + R33 Rll - R&]&. 

R33 - R33 

When U2 9 lRnml two of these roots are pure imaginary and apparently are 
associated with a shear wave supported by the pseudo-elastic behaviour of the 
stress relation (3 .8 ) .  Models A and B give similar results. In  each case when 
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U 2  I R,,I there are two imaginary roots and one with a negative real part; the 
roots are different for the two models and in each case they differ from the results 
obtained using (3.8), but the one root of interest in each case approaches - 1 as 
R,,/U2 -+ 0. 

The fact that only one boundary condition can be applied a t  the surface 
indicates that equations (3.5) and the stress predictions based on our approxima- 
tion to (3.1) do not adequately model the flow. The inclusion of direct viscous 
stresses in (3.1) will not alter this result when Re B 1. However, if the molecular 
diffusion of Reynolds stress is retained in equations (3.2) the differential system 
will be raised to sixth order. The additional solutions will be associated with 
characteristic a values of O(Re4). One of these additional solutions could be used 
to construct a boundary-layer solution which would satisfy the tangential 
boundary condition a t  the surface in the same way as the rapidly decaying 
'viscous ' solution of the Orr-Sommerfeld equation is used to satisfy that condi- 
tion in laminar flow problems. We are led, then, to the conclusion that although 
the turbulence model advanced here includes anisotropic stresses and represents 
a fourth-order system it plays the same role in predicting turbulent flow as the 
inviscid Orr-Sommerfeld equation plays in laminar flow problems. However, in 
contrast to the inviscid Orr-Sommerfeld equation, the equations associated with 
the turbulence model are regular wherever U' is bounded. 

One additional point of interest is the behaviour of the solutions of (3.1)-(3.3) 
when horizontal derivatives are small compared with vertical derivatives, the 
situation that is expected to arise near the wave surface. It is not difficult to see 
that in this case 

describe the flow to Ofa). The behaviour of W,, is identical with the eddy viscosity 
model proposed by Hussain & Reynolds (1970) but the behaviour of 22 is not; in 
fact this type of stress variation cannot be obtained from an eddy viscosity 
constitutive equation if the viscosity is taken as a scalar rather than the more 
general second-order tensor appropriate to an anisotropic medium. The velocity 
U + a@l will be recognized as the linearized law of the wall for a bounding surface 
a t  x3 = aq. 

Finally, the method of applying the surface boundary condition 9o = - U ( 0 )  
deserves some comment. Up to now it has been assumed that the primary velocity 
profile is logarithmic, but this cannot be correct down to x3 = 0, where it is known 
that U = - c (c being the wave speed). Without precise information about U very 
near the surface and additional assumptions about the fluctuating turbulent 
stress in that region it is not possible to integrate the equations to x3 = 0, where 
the surface condition is to be applied. However from the discussion above it is 
seen that near the surface (but in the region where U is still logarithmic) 

- U'q + +(%)13/&3) u. 
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If it is assumed that this behaviour continues down to the surface it is possible to 
develop a boundary condition on e 3 ( h ) ,  where h is some small height where the 
profile is logarithmic. To do this the continuity equation is integrated from 
x, = 0 according to 

If h < 1 then the second integral contributes little (this assumption has been 
verified from the results) and it is found that the appropriate surface condition on 
$ is $(h) = - U(h) .  The results in $ 5  are based on the assumption that h is the 
position where U(h)  - U ( 0 )  = 1 but these results can hardly be distinguished 
from those obtained using larger values of the velocity difference across the 
sublayer. 

4. Viscoelastic turbulence 
The concept of an eddy viscosity is neither new nor is it pleasing from an 

aesthetic point of view. Examination of the stress conservation equations (3.1) 
suggests it is unlikely that the terms Y,, will adjust in just such a way that the 
stress is proportional to the local rate of strain. It seems that, at  the very least, 
any attempt to propose a phenomenological relation between stress and mean 
flow should allow for elastic behaviour of the turbulence. Nevertheless, Hussain & 
Reynolds (1970) have had considerable success in describing the dynamics of 
per6urbations to a turbulent flow using an eddy viscosity model. It therefore 
seems worthwhile to examine the consequences of applying an eddy viscosity, 
or perhaps a combination of an eddy viscosity and elasticity, to the flow over a 
wave. 

The models described in this section are based on the assumption that the 
turbulent stress of a fluid element is determined by the rate of strain it has 
recently experienced. Therefore it is proposed that 

t A h 

R,, - gs,, R,, = j H(t ,  7) [a, 0, + a, on] dr ,  (4.1) 

where the rate of strain is to be evaluated along the path x = 0. It can be seen 
from (1 .1)  that the normal stress acting on the surface $4!33 - 9J is not affected by 
the quantity gkk and therefore the average normal turbulent stress need not be 
determined. If the ‘memory’ function H ( t ,  r )  vanishes rapidly as t - r + 00 then 
the stresses predicted by (4.1) will be primarily determined by the local rate of 
strain and the fluid wiIl behave in a viscous manner. However if the fluid’s 
memory is long the constitutive relation (4.1) will be that of a viscoelastic fluid. 

One constraint on possible memory functions results from requiring (4.1) to 
agree with the ‘law of the wall’ relation for small changes in Bl3. This leads to 

--m 

r t  
J H(t,r)dT = 2R13/U‘. 

- w  
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This relation alone is insufficient to adequately specify H and so it has been 
assumed that H is of the simple form 

H(t ,  7) = 2R13we~w(7-t), 

which satisfies (4.2) and has only the one adjustable parameter, w.  This simple 
form allows (4.1) to be integrated directly. The fluidelement which passes through 
the point (xl, x3, t )  follows the path 

X1(7) = x1+ [7 - t ]  u + O(a), 

X3(7)  = x3-u(lCr/U) [eiu@-t)- l]eix, 

where 1JF(x3) is as defined just above (3.5). Substituting this into (4.1) gives 

The results labelled model C in $5  correspond to the choice l / w  = 0. In  this 
case the shear stress behaviour is identical to that of a viscous fluid with the 
viscosity 2R13/U' and is therefore identical to the form for 9 1 3  proposed by 
Huwain & Reynolds. 

The final model tested in this paper is obtained by requiring that in the limit 
U' -+ 0 the constitutive relation should approximate the behaviour of (3.8). This 
behaviour cannot be modelled exactly by (4.1) but an order of magnitude agree- 
ment can be achieved if one is willing to approximate (3.8) by 

ua1913 = -* (Rl l+R33)  (a3@1+a1@3)* 

This pseudo-elastic behaviour is obtainedfrom (4.3) when w = - 4R,,/(R11 + R33); 
this value of w was used for the results which in the next section are referred to 
as model D. 

An analysis similar to that outlined in $ 3 can be used to show that when the 
fluctuating stresses are given by (4.3) the momentum equations (1.1) admit two 
solutions which vanish as x3 --f 00. Therefore an eddy viscoelasticity model can, 
in contrast to the models discussed in the previous section, satisfy both the 
surface boundary conditions (1.2). Unfortunately this presents a serious difficulty 
since the value of the horizontal velocity component a1 at the surface is deter- 
mined by U', the gradient of the primary flow at the surface. The logarithmic 
velocity profile predicted by the law of the wall is not correct at  the surface and 
there are no measurements of U' very near a wavy surface. The lack of a precise 
primary velocity profile near the surface is not a serious problem in dealing with 
models A and B since only the fluctuating vertical velocity @3 is required and 
this varies much more slowly than however for the eddy viscoelasticity 
models some way of dealing with this problem must be found. 

As will be seen from the results to be presented in $ 5 the details of the wave- 
induced flow predicted by models C and D are strongly dependent on the details 
of the mean velocity profile very near the surface. Davis (1970) found that the 
quasi-laminar model is also sensitive to the form of U very near the surface. 
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Because we have no data on the mean velocity near the surface, models C and D 
can only be properly tested by applying them to flow over waves under various 
velocity profiles all of which become logarithmic far above the surface. The 
particular class of profiles investigated here are defined by 

U = In (x3/zo) - c = In (x3/z,) 

U = (x3/zI) In (zl/zo) -c  for 

for x3 > zl, 

0 < x3 < zl. 

This profile is continuous at the transition point zl. Across the sublayer the 
velocity increases linearly by the amount AU = In (zl /xo) and it is this quantity 
which is used in 6 5 to characterize the individual members of the velocity profile 
family. 

5. Results 
The results presented in this section were obtained through numerical integra- 

tion of the ordinary differential equations relevant to each different turbulence 
model tested (equations (3.5) and (3.6,) for model A ,  (3.7) for model B and (4.3) 
for models C and D). The equations were integrated from x3 = 10 towards 
x3 = 0 using a fourth-order Runge-Kutta algorithm and a step size of - 0.02 for 
x3 > 1.0 and - 0 . 0 2 ~ ~  for x3 < 1. The choice of step size and starting ordinate were 
determined through experimentation using the acceptance criteria that a 50 yo 
increase in the starting ordinate or a 50 % reduction in step size should produce 
a change of less than 0.05%. An inability to achieve these criteria with the 
equations for models A and B led, in fact, to the discovery that the fourth-order 
differential systems appropriate to these models admit only one solution which 
vanishes as x3 + CO. Two independent solutions for the eddy viscoelasticity 
models were obtained without the use of the ‘filtering’ techniques required to 
solve the Orr-Sommerfeld for high Reynolds numbers. 

The principal results are presented in the form of the coefficients a and p used 
by Miles (1957) to describe the normal stress on the boundary. These are defined by 

- &33 = a ( a  + ip) eixi + P - R33, 

where it must be remembered that stresses are scaled by density x Ug and the 
parameter a is the dimensionless wave amplitude, which is equal to the maximum 
wave slope. It is important to note that it is the total normal stress which is 
nearly constant across the sublayer near the surface; if the surface is smooth &33 

must vanish on the surface and although both and ff,, may vary rapidly the 
total normal stress will not. In any event, it is the total stress which does work 
on the wave. 

For comparison the experimental results of Dobson (1969) and Kendall(l970) 
are summarized in figure 1. Dobson kindly provided values of p computed from 
his data and these are plotted as a numeral (the value of p)  next to a symbol which 
is used to code the run from which the value is taken and to denote the values of 
z,, the dimensionless critical height, and c, the dimensionless wave speed. 
Kendall’s results are much less variable than Dobson’s and a summary of them is 
contained in the six plotted points; almost all his experimental values of p fall 
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FIGURE 1 .  Experimental values of (the numerals beside the symbols) shown on a plot of 
z, vus. c. Dobson's results: 0 ,  run 1 ; A, run 2a; V ,  run 2 b ;  0, run 3 ;  A, run 4a, v, run 4b; 
m, run 6. 0, typical values obtained by Kendall. 

between 3 and 10 and have the general trend indicated by the points plotted. 
In order to facilitate comparison of measured and predicted values of p the two 
parallel dashed lines in figure 1 will be plotted along with the predicted values. 

It should be pointed out that figure 1 must be interpreted in the light of the 
fact that the co-ordinates z, and c are not measured directly and that their 
computation involves use of the roughness height of the mean logarithmic profile, 
a quantity which is rarely known with high accuracy. Another important feature 
bearing on the comparison of p values obtained under different conditions is the 
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fact that according to the eddy viscoelasticity models of 3 4 the wave-induced 
flow is sensitive to the details of the mean flow very near the surface. If this type 
of model is correct then one would not expect close agreement of data obtained 
in the field and the laboratory since in the laboratory the region influenced by 
viscosity is apt to be significantly more extensive than in the field and this will 
be likely to be manifest in differences between the mean velocity profiles near 
the surface. It will be noticed that Dobson’s values of p are fairly consistent for 
c < 5 but for larger values of c they appear to vary rapidly without any obvious 
relation to the parameters c and 2,. It is not known to what extent this is due to 
experimental difficulties but it will be seen that eratic variation of p is not 
inconsistent with the predictions of the eddy viscoelasticity models C and D. 
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FIGURE 2. Contour plots of (a) a and ( b )  p predicted by model A.  

Figures 2-4 are contour plots of the normal stress coefficients a and predicted 
by the various turbulence models. Before discussing these results the method of 
preparing the contour plots deserves some comment. Since it is relatively eco- 
nomical to obtain integrations for various values of c and AU (the value of the 
mean flow difference across the surface sub-layer) while holding z, constant, the 
contour plots have been constructed from ‘sections’ along which z, is constant. 
The variation of a and p between these sections (which are at  z, = 0.001,0*003, . . . , 
1,3) has been inferred and must therefore be interpreted with some caution. 

The results obtained from model A (the adaptation of the Bradshaw, Ferriss & 
Atwell model) are contained in the contour maps of CI. and /3 depicted in figure 2. 
For these calculations R,, = - 0.80, R,, = - 0.35, R,, = - 0.10 and R,, = 0-16. 
These values seem t.0 be a reasonable compromise between the data presented by 
Lumley & Panofsky (1964) and Volkov (1969). The predicted values of /3 are of 
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O( 1) rather than O( lo), which appears to be representative of the experimental 
values. A local minimum value of p occurs around x, = 0.05 and p is negative for 
zc > 3. Before it was realized that only one boundary condition should be applied 
to  solutions for model A some results were obtained using both normal and 
tangential velocity boundary conditions a t  the surface. The predicted values of 
/? were large (approximately of the size obtained for models C and D )  apparently 
owing to the fact that U',  which enters into the tangential velocity boundary 
condition, is generally large. 
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FIGURE 3. Contour plots of (a)  a, ( 6 )  /? and ( c )  /? predicted by model C for 
AU = 5, 5 and 2.5 for (a ) ,  ( b )  and (c) respectively. 
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Of the four models tested here the least satisfactory was B (the modification of 
model A in which 9f13 and W,, vary independently) and no results for this model 
have been presented. Most of Kendall's and Dobson's measurements show 
/3 > 0 and a c 0; this situation was almost never found for model B and no 
amount of imagination could result in a favourable comparison of theory and 
experiment. 
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FIGURE 4. Contour plots of (a)  CI and ( b )  /3 predicted by model D for AU = 5. 

The values of a and p predicted by the eddy viscoelasticity models C and D are 
presented in figures 3 and 4. These two models differ primarily in the relationship 
of stress and rate of strain far from the wave surface. Near the surface, U' 9 Ulw 
and the constitutive relation (4 .3 )  is approximately the same for the two models; 
it is only far from the surface, where U 2: U', that the value of w is important. 
Intercomparison of figures 3 ( a )  and 4(a)  (a for models C and D with AU = 5), 
and figures 3 ( b )  and 4 ( h )  (p for the same conditions) shows that the two models 
do not differ significantly. This suggests that the surface normal stress is deter- 
mined primarily by the nature of the flow near the boundary, where the two 
models predict similar relations between the fluctuating stresses and the mean 
flow. 

Comparison of figures 3(h)  and ( c )  (p for model C with AU = 5 and 2.5, 
respectively) demonstrates the importance of the mean velocity profile near the 
surface. It will be noticed that the principal difference between these two figures 
can be ascribed to an apparent displacement of the c = 0 axis: if the abscissa of 
figure 3 (c )  (AU = 2-5 )  were replaced by the value of c + 2 the figure would be 
very similar to figure 3 (b).  This relationship was found for a and p as predicted 
by both models and appears to follow from the fact that flow is primarily deter- 
mined by the tangential surface boundary condition 9Yl(0) = - U'q. The surface 



304 R. E.  Davis 

shear is U’ = (AU/x,) exp (c - AU), which remains constant when AU is changed 
from 2.5 t o  5 and c is reduced by 1.8. 

It will be noticed that according to both models C and D there is a region of 
negative /? for large c when z, 2: 0.01. Results obtained using many values of the 
memory time constant parameter w indicate that this is a universal feature of 
eddy viscoelasticity models and it is interesting to note that this region of wave 
damping occurs a t  roughly the value of x, a t  which model A predicts a minimum 
in /I. It should also be noted that Dobson obtained some large negative values of 
/3 in this region. 

In  addition to  the above comparison of predicted and measured surface 
pressures it would be desirable to compare other details of the flow. An attempt 
has been made to compare the wave-induced mean flow components %l and @3 
predicted by models C and D with the laboratory measurements of Stewart 
(1970). Unfortunately, these features of tihe flow are more sensitive to the nature 
of the mean velocity profile near the surface than is the surface pressure. This 
makes it difficult to draw any definite conclusions from comparisons with 
experiment since the mean profile is unknown. 

Despite the uncertainty associaked with the sublayer region of the mean 
velocity profile certain general comments can be made about the predicted and 
measured values of %l and a3. The choice AU = 5 appears to give the best 
values of /I and so most calculations were made for that choice. In  general the 
predicted magnitudes of a1 and 4V3 exceed the measured values. The magnitudes 
predicted by D exceed those of C for x3 > x, and are generally smaller for x3 < x,. 
The agreement for a1 is about the same that as found by Stewart (1970) and 
Davis (1970) for the quasi-laminar model. Both models C and D overestimate g3 
somewhat more than the quasi-laminar model. As was found for the quasi- 
laminar model the phases of %l and a3 are extremely sensitive to the sublayer 
profile and no real comparison is possible other than to say that model C com- 
pares a t  least as well as the quasi-laminar model. Rapid oscillation of the phases 
of a1 and %3 predicted by D are found for x3 > 3 but Stewart’s measurements 
do not include this region. 

6. Conclusions 
The results presented above suggest some conclusions not only about the sue- 

cess of predicting flow over waves using the particular turbulence models tested 
but also about what additional studies are required to  allow further progress. 

First, it may be said that the surface normal stress predicted by the eddy 
viscoelasticity models is in reasonable agreement with experimental values. As 
was shown in 3 2 the work done on the surface by the wave-induced mean stress 
is in fact the result of an interaction of the mean flow and anisotropic stresses. 
In  Miles’s (1957) quasi-laminar model these stresses are assumed to be direct 
viscous stresses; this assumption results in predicted p coefficients which are 
much smaller than those measured. At the very least, the results obtained here 
show that fluctuating turbulent stresses can explain the large measured values 
of p. Further, they appear to indicate that the tangential velocity boundary 
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condition on the wavy surface plays an important role in the flow and models, 
such as those of $ 3 ,  which do not account for this condition will be un- 
satisfactory in determining the work done on the wave. Because the important 
tangential velocity boundary condition involves the primary flow shear v" at 
the surface the mean velocity profile over waves must be determined down to the 
region under wave crests. This poses a very challenging experimental problem 
but one which is essential to further progress. 

It is also evident that the behaviour of such parameters as a and /3 cannot be 
characterized by a single parameter such as wave velocity over wind speed or 
critical layer height over wavelength; the surface stress depends on both these 
parameters and the dependence is not necessarily a slow one. This means that 
fairly precise data concerning the mean profile are required. Further, measure- 
ments which use frequency filtering to determine wave-induced quantities must 
be of fairly high frequency resolution since c and z, are strong functions of the 
wave frequency. 

FinalIy, it  must be emphasized that measurements of the wave-induced mean 
velocities el and @3 are not very useful either for testing the predictions of a 
theory or for determining the work done on the wave. If, as now seems certain, 
anisotropic stresses play an important role in the flow the wave-induced mean 
Reynolds stress - is of very little relevance to the work done on the wave. 
As was pointed out in $ 5,  the mean velocity components appear to be very much 
more sensitive to small changes in the mean velocity profile and to the exact form 
of the relation between Wnm and en than does the work done on the wave. This 
suggests that 42% may not be very similar under different experimental conditions 
and therefore does not provide a very useful test for theoretical predictions. 
Surface pressures alone do not provide a very stringent test on theories and it 
appears that the wave-induced mean velocity is not suitable; perhaps the 
variation with x3 of averaged quantities like e3 B will prove most useful. 

While measurements of mean flow properties such as B and @, serve as tests 
of various possible models of turbulent stress generation they do not provide 
much help in developing better theories. Apparently what is required is very 
careful measurements of both en and the turbulent stresses Wnm. These data can 
hopefully be used to formulate better constitutive relations; at  least they can 
help answer such general questions as how directly related are W,, and the local, 
rather than the global, structure of the mean flow. 

Finally, the overall objective of this type of research deserves some comment. 
As our knowledge of airflow over waves and the related problem of wave genera- 
tion increases it becomes increasingly clear that a single unified explanation will 
not be found immediately. Even if the airflow over small amplitude waves were 
understood, the generation of real waves would remain a difficult problem and 
it now appears that understanding the airflow involves acquiring a fairly com- 
plete picture of the generation of turbulent stresses. On the one hand, this means 
that solving the airflow problem will be very difficult but, as a result, it follows 
that this type of research is of greater scope than simply understanding the flow 
over waves; the problem is in fact an ideal context in which to develop and test 
theories of turbulent stress generation. 

- 
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